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ABSTRACT 
 

All the biological systems in nature exhibit enormous diversity during evolution. The dynamics 

of such systems are very interesting. Studying such dynamics is a cumbersome job but it 

enables humans to find the reasons of extinction of certain species or unbalance in such 

systems. These studies can help in finding some techniques to control the existing chaos, 

which could provide solution to many existing problems. In this paper, we have worked 

with a single-species model with stage structure for the dynamics in a wild animal population 

for which births occur in a single pulse once per time period. We have tried to analyze 

regularity and chaos in the system by finding bifurcations, Lyapunov exponents, topological 

entropy of the evolving system and the correlation dimension of the chaotic attractor. Finally, 

the results and findings are briefly discussed in the last section. 
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1. Introduction 

 

Usually biological systems are complex 

and multicomponent, [1]. They are 

spatially structured and their individual 

elements possess individual properties. 

Such complexity also effects the system 

significantly during evolution. Natural 

processes tend to vary over time and 

space, as well as between species. In 

recent years there has been a great 

emphasis on three concerning phrases: 

nonlinear dynamics, chaos, and 

complexity. This interest has led to a large 

number of popular-science articles 

covering models and graphics to explain 

chaos, regularity and chaos control in 

certain cases. Henri Poincaré (1854–1912), 

a late-nineteenth century French 

mathematician was the first one to 

extensively study topology and dynamic 

systems. All natural systems exhibit 

massive diversity in behavior during 

evolution. Complex systems are 

characterized by an internal structure 

which is built by numerous and varied 

processes, subsystems and 

interconnections. Systems featured by 

complexity display a number of properties 

such as uncertainty, interactions at 

different levels, self-organization and 

nonlinear feedback. Due to its nonlinear 

structure, such systems may display the 

properties like complexity and chaos. 

Elaborate descriptions on complexity can 

viewed from some well-written articles [2 – 

7]. 

 

A chaotic system can better understood 

by measuring Lyapunov exponents (LCEs), 

topological entropies and correlation 

dimension. Positive LCE during evolution 

signifies chaotic evolution. Topological 

entropy, a non-negative number, provides 

a perfect way to measure complexity of a 

dynamical system. For a system, more 

topological entropy signifies more 

complexity. Actually, it measures the 

evolution of distinguishable orbits over 

time, thereby providing an idea of how 

complex the orbit structure of a system is 

[8–16]. It describes the rate of mixing of a 

dynamical system. It related to Lyapunov 

exponents both through the 

dependence of rate and to the ergodicity. 

For a system having non-zero topological 

entropy, the rate of mixing must be 

exponential which is comparable to 

Lyapunov exponents. However, such 

exponentiality is not relative to time, rather 

to the number of discrete steps through 

which the system has evolved. Positivity of 

Lyapunov exponent and topological 

entropy are characteristic of chaos. LCE's 

provide the rate of divergence of orbits, 

which initially started very closely. The book 

by Nagashima and Baba, [16]. gives a very 

clear definition of topological entropy. 

 

While working with population dynamics in 

many models the increases in population 

due to birth assumed time-independent, 

but that is not always the case. In many 

cases, some species reproduce only during 

a single period of the year. We work here 

with a single-species model with stage 

structure for the dynamics in a wild animal 

population for which births occur in a single 

pulse once per time period. This model 

studied here proposed by Tang and 

http://www.referenceforbusiness.com/knowledge/Mathematician.html
http://www.referenceforbusiness.com/knowledge/Dynamical_system.html
http://www.referenceforbusiness.com/knowledge/Dynamical_system.html
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Cheng, [17]. We obtained bifurcations, 

LCE’s and topological entropy to analyze 

and measure chaos and complexities in 

the system. The sequence of bifurcations, 

leading to chaos shows that the dynamical 

behaviors of the single species model with 

birth pulses are very complex and chaotic. 

 

2. The Model 

 

The change in population size, in absence 

of stage structure, assumed to happen as 

per the population growth ratio, [17], 

represented by the equation 

 

N = B(N)N − d N (1) 

 

Here, d > 0 is the death rate constant, 

and B(N) is the birth rate function 

satisfying some basic assumptions for N ∈ 

(0, ∞) as: 

 

(i) B(N) > 0 ; 

 

(ii) B(N) is continuously differentiable 

with B′(N) < 0 ; 

 

(iii) B(0+ ) > d > B(∞) 

 

The condition (iii) implies the existence of a 

carrying capacity K of the environment 

such that 

 

B(N) > 𝑑 for N < K , and B(N) < 𝑑 for N > K. (2) 

 

This implies an unique steady state 

equilibrium N∗exists of equation (1) such 

that when N∗ = K , B(N∗) = 𝑑. Two 

examples of birth functions 

B(N) usually found in biological literatures 

that satisfy above conditions (i) – (iii) are 

obtained as: 

(a) B1(N) = b e−N, with b > d ; 

 

(b) B2(N) =
q + Nn , with p, q, n > 0 and 

q 

> d . 

 

The function B1(N) is known as the Ricker 

function and the function B2(N) is known 

as the Beverton−Holt function. 

 

We assume now that the single species 

population in model (2.1) has stage 

structure, and that the population N is 

divided into immature and mature classes, 

with the size of each class given by x(t) and 

y(t), respectively, so that N (t) = x(t) + y(t), 

and only the mature population can 

reproduce. 

 

With the assumption that the single species 

population in model(1) has stage structure 

and that the population N is divided into 

immature and mature classes, with the size 

of each class given by x(t)and y(t), 

respectively, so that N(t)= x(t)+y(t), and 

only the mature population can 

reproduce, [17]. 

 

Taking Ricker function,B(N) = e− (x+y), [17], 

a discrete form dynamic model derived 

leading to the following two equations: 

 

xn+1 = 𝑥𝑛 𝑒− (𝛿+𝑑) + 𝑏 [𝑦 +  𝑥𝑛 (1 − 𝑒− 𝛿 )] 

𝑒− [𝑑+ 𝑒− 𝛿 (𝑥𝑛+ 𝑦𝑛] 

xn+1 =  𝑒− 𝛿 (1 − 𝑒− 𝛿)𝑥𝑛 + 𝑒− 𝑑 𝑦 (2) 

 

3. Numerical Simulations: 
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To investigate the dynamics of evolution of 

system (2), various numerical simulations 

performed such as obtaining bifurcation 

diagrams, calculating Lyapunov 

exponents, topological entropy and 

correlation dimensions of the system for 

different cases. Explanations of these are 

as follows: 

(a) Bifurcations: 

Bifurcations scenario in any nonlinear 

dynamical system play a very important 

role in studying the evolutionary properties 

of the system. From bifurcations, one 

observes the qualitative changes in the 

evolving system in various parameter 

space. Here, varying parameter b, and 

keeping d= 0.7 and δ = 0.5, bifurcations of 

system (2) are obtained. Bifurcation figures 

shown in Fig. 1, are for three ranges of b; 0 

 b  600, 300  b  350 and for 550  b  

600. One observes, as parameter b 

increases, bifurcation phenomena from 

one cycle to two cycle, then 4 cycle, then 

8 cycle etc., a period doubling criteria 

and finally leading to chaos. Within 

chaotic region one clearly also observes 

various periodic windows. The appearance 

of periodic windows within chaotic region 

of bifurcations is an indication of 

intermittency and other complex 

phenomena. Periodic windows become 

gradually shorter and appearance 

become more frequent while moving 

forward in parameter space. 
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Fig.1: Bifurcation diagrams along x- and y- axes of system (2) for 0  b  600, 300  b  350 and for 550  b 

 600 when d= 0.7 and δ = 0.5. 
 

(

a) Regular Periodic and chaotic attractors: 

 

With fixed values d= 0.7 and δ = 0.5 and 

changing values of parameter b, 

different periodic attractors are obtained, 

Fig. 2, for showing regular motion of system 

(2). However, when values of b increased 

substantially, system evolution changes 

from regularity to chaos. These can 

observed from time series plots and plots of 

chaotic attractors shown in Fig. 3. 
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Fig. 2: Periodic attractors of system (2) with periods 1, 2, 4, 8 for different values of parameter b. Other 

parameters are d= 0.7 and δ = 0.5. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Chaotic time series plots, (upper row), and plots of chaotic attractors, (lower row) are shown here. The other 

parameters are taken as d= 0.7 and δ = 0.5. 
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(c) Lyapunov Exponents (LCE’s) : 
 

Lyapunov exponents are considered generalizations of the eigenvalues of steady-state and limit-cycle 

solutions to differential equations. The eigenvalues of a limit cycle characterize the rate at which nearby 

trajectories converge or diverge from the cycle. The Lyapunov exponents do the same thing, but for arbitrary 

trajectories, not just the special ones that are periodic. Calculation of Lyapunov exponents for nonlinear 

systems involves numerical integration of the underlying differential equations of motion, together with 

their associated equations of variation. Actually, a Lyapunov exponent measures how "complex" the map is. 

The system evolutions considered, respectively, regular or chaotic whether Lyapunov exponents are < 0 or > 

0. Plots of Lyapunov exponents for parameters d = 0.7, b = 540 and δ = 0.5 for two different ranges of 

iterations are shown in Fig. 4. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 4: Plots of LCEs for d= 0.7, δ = 0.5 then, (i) upper row for regular cases for different values of b and (ii) 

lower row for chaotic case for same b = 540 but for different ranges of iterations. 
 

(b) Topological Entropy: 
 

The topological entropy measures the growth of the number of periodic points. .In 

communication theory, a measure of uncertainty or randomness that is related to 

information. The greater the entropy, the greater the uncertainty, and the greater the 

amount of information capable of being transmitted. However, once received, information 

represents a decrease in uncertainty. The flip of a fair coin yields one bit of entropy with 0 

or 1 representing heads or tails. A binary bit with equiprobability of a 0 or 1 is random. Also, 

the higher the probability of an event or a state, the 
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lower the entropy. Back in 1948, Claude Shannon helped established the theoretical basis 

for the development of information and communication theory with his equation of entropy. 
 
A second intuitive interpretation of entropy is as a measure of the disorder in a system. There 

are interesting examples of systems that appear to develop more order as their 

entropy (and temperature) rises. These are systems where adding order of one, visible type 

(say, crystalline or orientation ally order) allows increased disorder of another type (say, 

vibrational disorder). Entropy is a precise measure of disorder but is not the only possible 

or useful measure. The topological entropy is a nonnegative number which measures 

the complexity of the system. Roughly, it measures the exponential growth rate of the 

number of distinguishable orbits as time advances. To name a periodic orbit, we need 

only choose one of its cyclic permutations. The number of distinct periodic orbits grows 

rapidly with the length of the period. A simple indicator of the complexity of a dynamical 

system is its topological entropy. In the one-dimensional setting, the topological entropy, 

which we denote by, is a measure of the growth of the number of periodic cycles as a 

function of the symbol string length (period). 
 

Measure of theoretic entropy, which is also called the Kolmogorov—Sinai invariant, was 

defined for measure preserving transformations of probability measure spaces. Adler, 

Konhelm and McAndrew in the 1960s, [8], first introduced the concept of topological 

entropy. Topological entropy describes the rate of mixing of a dynamical system. It is 

related to Lyapunov exponents both through the dependence of rate and to the ergodicity. 
 

For a system having non-zero topological entropy, the rate of mixing must be exponential 

which is comparable to Lyapunov exponents. Though such exponentiality is not relative to 

time, rather to the number of discrete steps through which the system has evolved. 

Positivity of Lyapunov exponent and topological entropy are characteristic of chaos. The 

book by Nagashima and Baba, [16], gives a very clear definition of entropy. The graphics 

for Topological Entropy are shown below: 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5: Plots of topological entropies are presented with d= 0.7 and δ = 0.5 and 300  b  550 and 440  b  460. 
 

(c) Correlation Dimension: 
 

http://www.scholarpedia.org/article/Complexity
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Correlation dimension provides the dimensionality of the evolving chaotic attractor. It is a kind of fractal dimension and 

its numerical value is always non-integer. Being one of the characteristic invariants of 

 
nonlinear system dynamics, the correlation dimension actually gives a measure of complexity for the underlying attractor 

of the system. The procedure to calculate correlation dimension is statistical and that we have followed here Martelli, 

[18]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 6: Plot of correlation integral curve for d= 0.7, b = 540 and δ = 0.5 
 

Using linear fit to the correlation data used to obtain correlation curve, Fig. 6, one obtains 
 
Y = 5.41035 x + 1.31561 
 
Thus, the correlation dimension obtained 

approximately as DC 1.31. In a similar 

way correlation dimension of every chaotic 

attractor, emerging during evolution can 

obtained. 

 

4. Discussions: 

 

Complexity and chaotic evolutionary 

motion have been discussed for 

discrete mature population model 

proposed in [17]. Bifurcation diagrams, 

Fig. 1, show the system evolve through 

period doubling root to chaos. Measures of 

complexity; such as Lyapunov exponents, 

topological entropies, correlation 

dimension have been calculated and 

shown through figures, Fig. 2 – Fig. 7. Plots 

of LCEs and topological entropies show 

clearly the complexity nature of the 

system. The correlation dimension for the 

chaotic attractor when parameters d= 

0.7, b = 540 and δ = 0.5, be obtained, 

approximately as, DC  2.45. 
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