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ABSTRACT 

Huge studies on pollution monitoring have been realized to evaluate pollution impact on 

marine and terrestrial environments using physiological, biochemical and molecular aspects. 

Thereby, many plants species were used as a potent bioindicator for monitoring pollution 

with low cost. Employment of algae as bioindicator for detection of environmental pollution 

in marine ecosystems has recently attained much attention. Chemical pollutants impacts on 

living organism (bacteria, plants and animals) could be expressed as growth impairment, 

pigments content reduction, organism death and DNA damages and mutations. Their 

dangers occur in terrestrial and aquatic environmental ecosystems, in different ways. The 

current investigation mainly reported chemical pollutants impacts on plants due to their high 

potency in accumulating these pollutants in their tissues.   
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INTRODUCTION 

 

Heavy metal contamination forms the 

dangers that threaten the environmental 

ecosystems including seas, lakes and rivers 

worldwide.  The interest in pollutants has 

increased worldwide because of their high 

toxicity on one hand and the fact that 

they do not break down naturally in the 

environment on the other hand. Therefore, 

many studies have focused on pollutants 

behavior investigation, their toxicity and 

ability to move on to the food chain and 

possible ways to remove it. This 

phenomenon may pose a direct threat to 

humans and public health (Phillips and 

Rainbow, 1993; Rainbow, 1995; Bing et al., 

2013; Khan et al., 2013).  

 

Pollution in marine ecosystems is a serious 

environmental issue. It considerably 

increased due to augmentation human 

industrial activities. Thereby, monitoring of 

chemical pollutants in marine ecosystems 

became one of the indispensable interests 

in environment. Even, use of living 

organisms for detection of marine pollution 

could be considered as a potent tool and 

provide early warning signals of water 

pollution trends with low cost. 

  

Heavy metals impact has been widely 

investigated in many reports. In this 

regards, Jamers et al. (2013) reported that, 

cadmium (Cd), mercury (Hg) and lead 

(Pb) are considered by the US 

Environmental Protection Agency (EPA) 

the three contaminants of greatest threat 

to the environment.  Their impacts on living 

organisms have been widely investigated 

at physiological, biochemical and 

molecular levels. Many reports showed 

their toxicity in terrestrial (Shahrtash et al., 

2010; Liu et al., 2012; Azimi  et al., 2013; 

Zhang et al., 2015; Salarizadeh and Reza-

Kavousi, 2015), aquatic (Gupta and Sarin, 

2009) and marine (Wang et al., 1998; 

Atienzar et al., 2000; Zhou et al., 2011; 

Bouzon et al., 2012; Saleh, 2015a; 2016b; 

2016e) environmental ecosystems.  

 

Previously, it has been reported that heavy 

metals stress resulted in DNA changes 

manifested by loss or induction of new 

bands compared to the control. Thereby, 

DNA alteration patterns could be 

manifested by disappearance of control 

bands (DNA damage) or induction of new 

bands (DNA mutation) (Labra et al., 2003; 

Atienzar and Jha, 2006; Saleh, 2015b, 

2016a; 2016c & 2016d). In this respect, 

Labra et al. (2003) stated that RAPD or 

AFLP techniques were most potent than 

classic genotoxic assays, even RAPD 

marker could serve as an efficient tool for 

detecting temporary DNA changes that 

might not consequently manifest 

themselves as mutations. It has been 

demonstrated that PARD assay among 

available molecular markers, could be 

considered as a potent biomarker for 

monitoring DNA changes even DNA 

mutations induced by adverse 

environmental stresses in plants, animals, 

bacteria and algae (Wong et al., 2000; Liu 

et al., 2005; 2007; Aksakal et al., 2013; 

Aksakal and Esim, 2015; Saleh, 2015b, 

2016a, 2016c; 2016d).  
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Since 2014, Hori et al. reported that the 

terrestrial Klebsormidium flaccidum green 

algae shares some genes involved in light 

and drought tolerance with terrestrial 

plants; based on cell wall traits combined 

with the recently sequenced genome. 

Thereby, the current review mainly focused 

on physiological and genetic DNA 

changes induced by heavy metals stress in 

plants and algae using molecular marker 

tools. Consequently, it will be somewhat 

give an overview image about the 

importance of some living organisms 

(plants and algae) as potent bioindicators 

for monitoring pollution in ecosystems.  

 

Potential algae use 

Algae display a multiuse role in different 

manner; e.g. as bioindicator for heavy 

metal pollution (Rainbow, 1995); heavy  

metals biosorption (Vilar et al., 2008); 

bioremediation of wastewater (Prabha et 

al., 2016); as antimicrobial agent (Saleh 

and Al-Mariri, 2016). 

 

Physiological approach 

To date, toxicity of different chemical 

pollutants on living organisms at 

physiological level has been successfully 

documented in several researches (Table 

1). 

 

Cadmium (Cd) among chemical 

pollutants displayed an important role as a 

highly toxicant to bacteria, plants, algae, 

and fungi, where algae were the most 

sensitive (Trevors et al., 1986; Saleh, 2016c). 

 

 

Table 1. Chemical pollutants toxicity in living organisms at physiological approach. 

Living organisms Metal ion Reference 

Plants species 

  Monocotyledons 

  Wheat (Triticum aestivum L.)  Cd Milone et al. (2003) 

Wheat (Triticum aestivum L.)  Bo Kekec et al. (2010) 

Wheat (Triticum aestivum L.)  Pb Pazoki et al. (2014)  

Rice (Oryza sativa L.) Cd 

Verma and Dubey 

(2001) 

Rice (Oryza sativa L.) Cd Shah et al. (2001) 

Maize (Zea mays L.)  Cd and Ni 

Maksimovic et al. 

(2007) 

Maize (Zea mays L.)  Bo and Zn Erturk et al. (2015) 

Hydrilla verticillata Cd, Hg and Cu 

Gupta and Sarin 

(2009) 

Dicotyledons 

  Iris pseudacours L. Cr and Zn Caldelas et al. (2012) 

Submerged aquatic plants Hg, Pb, Cd and Cu Jana and Choudhuri 
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(1984) 

Okra (Abelmoschus esculantus L.)  Cd Aydın et al. (2013) 

Chili peppers (Capsicum annuum L.) Cd Aslam et al. (2014) 

Alfalfa(Medicago sativa L.) Cd and Hg 

Ortega-Villasante et 

al. (2005) 

Tobacco (Nicotiana tabacum L.) Cd Gichner et al. (2004) 

Sesuvium portulacastrum and 

Mesembryanthemum crystallinum Cd Ghnaya et al. (2007) 

Pea (Pisum sativum L.)  Cd Fusconi et al. (2007) 

Kalanchoe  Cd Ozyigit et al. (2016a) 

Bean (Phaseolus vulgaris L.)  Ni, Co, Cr and Zn  Zengin (2013)  

Ceratophyllum demersum Cd, Hg and Cu 

Gupta and Sarin 

(2009) 

Algae 

  Chlorella sp (Chlorophyta) Cd Kaplan et al. (1995)  

Padina gymnospora (Phaeophyta) Cu and Zn 

Amado Filho et al. 

(1996) 

Six examined seaweeds (C, R and Ph) Zn 

Amado Filho et al. 

(1997) 

Enteromorpha intestinalis (Chlorophyta) Cu Lewis et al. (1998) 

Enteromorpha spp. (Chlorophyta) Cd, Zn and N Malea et al. (2006) 

Potamocorbula amurensis and Macoma 

balthica Cd, Cr, and Zn Lee et al. (1998) 

Ulva lactuca (Chlorophyta) Cr(VI) Unal et al. (2010) 

Ulva lactuca (Chlorophyta) Cu, Pb, Cd and Zn Saleh (2015a) 

U. lactuca (Chlorophyta) Pb Saleh (2016e) 

U. lactuca (Chlorophyta) and Padina 

pavonica (Phaeophyta) Cd Saleh (2016b) 

Ulva lactuca (Chlorophyta) Cd Markham et al. (1980) 

Ulva lactuca (Chlorophyta) Pb, Cd and Co 

Bulgariu and Bulgariu 

(2012). 

U. prolifera and U. linza (Chlorophyta) Cd  Jiang et al. (2013) 

Gelidium sesquipedale (Rodophyta) Cu, Pb, Cd and Zn Vilar et al. (2008) 

Gracilaria tenuistipitata (Rhodophyta) Cu Collén et al. (2003) 

Gracilaria lemaneiformis (Rhodophyta) Cu and Cd Xia et al. (2004) 

Gracilaria domingensis (Rhodophyta) Cd 

dos Santos et al. 

(2012) 

Hypnea musciformis (Rhodophyta) Cd Bouzon et al. (2012) 

Nitzschia closterium (Bacillariaceae) 

Cd, Ni, Pb, Zn, Fe 

and CrVI Ova and Övez (2013) 
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It has been demonstrated that, some 

elements e.g. copper (Cu), zinc (Zn) and 

iron (Fe) in low concentrations are essential 

for catalyzing enzymatic reactions in living 

organisms. Other elements however, e.g. 

lead (Pb), mercury (Hg) and cadmium 

(Cd) could be associated as cofactors for 

activation of their enzymatic systems 

(Manoj and Padhy, 2013; Saleh, 2015a; 

2016b; 2016e). Chemical pollutants can 

affect plant and algal growth and 

physiological and biochemical activities; 

e.g. Photosynthesis activity and chlorophyll 

content. These effects could be 

manifested by decline in specific growth 

rate (SGR%), pigmentations content 

(chlorophyll and carotenoids) and total 

protein content (Bouzon et al., 2012; dos 

Santos et al., 2012; Jiang et al., 2013). 

It has been reported that Cd and Pb 

toxicity on chlorophyll content in plants 

could be attributed to their role in inhibition 

of key enzymes such as d-aminolevulinic 

acid dehydratase (ALA-dehydratase) and 

protochlorophyllide reductase associated 

with chlorophyll biosynthesis (Aslam et al., 

2014). Indeed these metals could impair 

the supply of Mg, Fe and Zn (Kupper et al., 

1996; Aslam et al., 2014). More recently, 

Ozyigit et al. (2016b) investigated Pb (0, 

100, 200 and 400 µmol/L) impact in rye 

(Secale cereale L.) after 2 weeks exposure 

period. The previous study showed a 

decline in physiological parameters e.g. 

chlorophyll a, chlorophyll b, total 

chlorophyll and carotenoids content by 

6.68%, 6.08%, 2.89% and 8.57%, respectively 

at the highest Pb applied concentration 

(400 µmol/L). Indeed, Erturk et al. (2015) 

reported boron (Bo) and zinc (Zn) impact 

on total soluble protein content in Z. mays. 

The previous study revealed that Zn ion 

reduced the previous parameter and this 

decline was more noticeable with Zn than 

Bo ions. 

 

Moreover, Gupta and Sarin (2009) 

reported 10 µmol/L Cd, 5 µmol/L Hg, and 

20 µmol/L Cu impacts on H. verticillata and 

C. demersum aquatic plants for 96 h. The 

previous study revealed that exposure to 

these heavy metals reduced chlorophyll 

and protein contents in the two species. 

This reduction was more pronounced in H. 

verticillata compared to C. demersum 

one. 

Whereas, Caldelas et al. (2012) reported 

physiological response of Iris pseudacorus 

L. plants to chromium (CrCl36H2O) and zinc 

(ZnCl2) (0, 10, 50, 100, and 200 µg/mL) for 5 

weeks. The previous study revealed growth 

impairment by 65% and 31% (dry weight) 

with Cr and Zn treatment, respectively. 

Whereas, metal treatment has no effect on 

photosynthetic pigment content. While, 

Aslam et al. (2014) investigated Cd (20, 40, 

60, 80 and 100 ppm) impact on C. annuum 

L. for 90 days exposure. The previous study 

showed that Cd stress caused significant 

reduction in shoot length, root length and 

fresh weight, protein, chlorophyll and 

carotenoid content.  

 

More recently, Ozyigit et al. (2016a) 

reported toxicity of Cd in Kalanchoe plants 

in vitro for two months. The previous study 
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revealed that 400 μM Cd caused 

reduction in Cha, Chb, Total Chl and 

carotenoids pigments recorded by ~40.57, 

~37.63, ~36.27 and ~37.66%, respectively 

compared to the control. 

 

As for algae, Unal et al. (2010) reported a 

response of U. lactuca to chromium (VI) 

(0.2, 0.5, 1, and 5 mM K2CrO4) after 2 h 

Cr(VI) exposure. The previous study 

revealed morphological changes in thallus 

cells, decline in  photochemical efficiency 

of PSII (Fv/Fm) ratio combined with an 

increase in  necrotic cells along with an 

increase of Cr(VI) from 1 to 5 mM Cr(VI), 

than the control. Whereas, Jiang et al. 

(2013) reported an insignificant decline in 

both chlorophyll and carotenoid pigments 

observed under 1.8 mg/L Cd compared to 

the control in both U. prolifera and U. linza 

marine algae. While, with 3.7, 7.4 and 14.8 

mg/L Cd, a decline in Chl content by 18, 

25 and 45%, respectively in U. prolifera has 

been observed; and it was 16, 20 and 39%, 

respectively for U. linza. As for carotenoids, 

the decline was found to be 16, 29 and 

54%, respectively in the case of U. prolifera 

and by 13, 16 and 44%, respectively below 

the control for U. linza. 

 

Whereas, Saleh (2015a) reported Cu (5.8 

mg/L), Pb (18.2 mg/L), Cd (10.5 mg/L) and 

Zn (9,9 mg/L) physiological impacts on U. 

lactuca after 5 days stress. The previous 

study showed that metals stress reduced 

SGR% in the following order: Cd ˃ Pb ˃ Zn & 

Cu. Whereas, decline in Chla  by 66%,  

64%, 53% and 50% with Pb, Cd,  Cu  and Zn 

treatment, respectively was recorded. 

While, Pb treatment caused the highest 

reduction in Chlb reduced by 80% 

compared to other tested ions. More 

recently, Saleh (2016e) studied toxicity of 

Pb (0, 2, 4 and 8 mg/L) after a 2 days 

exposure period in U. lactuca. The previous 

investigation revealed that Chla  

decreased by 1.32, 22.7 and 40.4% at 2, 4 

and 8 mg/L Pb, respectively. Whereas, this 

decline was recorded to be 15.8, 13.4 and 

17.7% for Chlb below the control under the 

above mentioned Pb concentrations. 

Moreover, Saleh (2016b) reported Cd (0, 

2.5, 5 and 10 mg/L) toxicity in U. lactuca 

(Chlorophyta) green and P. pavonica 

(Phaeophyta) brown seaweeds for 4 days. 

The previous study could suggest that U. 

lactuca was most sensitive to Cd stress 

than P. pavonica; by showing a higher 

decline in the examined physiological 

indices than P. pavonica. The previous 

study showed that Cd stress caused a 

decline in Chla ranged from 56.123 to 

66.865% in U. lactuca and from 16.183 to 

21.365% in P. pavonica respectively, when 

Cd applied concentration increased from 

2.5 to 10 mg/L. Whereas, carotenoids 

content decreased from 36.788 to 44.058% 

in U. lactuca when Cd applied 

concentration increased from 2.5 to 10 

mg/L. While, the previous parameter 

increased from 0.687 to 80.308% in P. 

pavonica as Cd applied concentration 

increased from 2.5 to 10 mg/L. The 

observed increase in carotenoids content 

in P. pavonica with the increase in applied 

Cd concentration makes them more 

tolerant to Cd stress compared to U. 

lactuca. Carotenoids pigments act as 

antioxidant and thereby, serve as 

osmolytes involved in heavy metals 
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detoxification by minimize ROS induction 

generated by heavy metals stress (dos 

Santos et al., 2012; Bouzon et al., 2012). 

Similarly, Zengin (2013) reported that 

carotenoids content significantly increased 

in leaves of bean (P. vulgaris L.) at various 

concentrations of Ni, Co, Cr and Zn heavy 

metals. Whereas, Pazoki et al. (2014) 

reported that Pb (0, 300, 600 and 900 

mg/kg of soil) reduced chlorophyll a and b 

with increase in carotene content in wheat 

(T. aestivum L.) as Pb concentration 

increased from 300 to 900 mg/kg. 

Previously, Kaplan et al. (1995) reported 

the induction of phytochelatins in Chlorella 

sp. algae subjected to Cd. Moreover, 

Shariati and Yahyaabadi (2006) reported a 

decline in chlorophyll content and an 

increase in beta-carotene pigmentations 

in a two strains (Iranian and Australian) of 

Dunaliella salina green algae as Cd 

concentration increased from 0.005 to 0.5 

mg/L, after 5 days exposure to Cd. 

 

Overall, according to Saleh (2016d), 

marine algae differently responded to Cd 

metal than the higher plants. This 

observation could be related to the 

absence of root system in algae and its 

presence in higher plants on one hand, 

and to the completely different interaction 

between metal and these two living 

organisms on the other hand. The 

occurrence of algae in direct contact with 

metal in metal solution makes them 

respond differently to heavy metals stress. 

Whereas, in terrestrial plants, Cd absorbed 

in different manner. Consequently, leading 

algae to adopt different protective 

mechanisms to minimize or detoxification 

unfavorable effect of applied metal.  

 

Molecular approach 

Previously, it has been documented that 

heavy metal pollutants caused oxidative 

and carcinogenic effects to living 

organisms in ecosystems. Their toxicity 

comes from its binding with nucleic acids 

through various reactions (direct or/and 

indirect) with DNA sites as well as affecting 

DNA replication. These phenomena lead 

consequently to DNA damages and 

mutations (Valavanidis and Vlachogianni, 

2010).  

 

These chemical pollutants provoked free 

radicals and reactive oxygen species 

(ROS), which arbitrary attack and damage 

DNA and important enzymatic proteins 

(Bal and Kasprzak, 2002). Lead (Pb) is one 

of fewer heavy metals beside Hg and Cd, 

classified as highly toxic element for living 

organisms in environmental ecosystems 

(Valavanidis and Vlachogianni, 2010). 

  

Many investigations reported DNA 

changes induced by chemical pollutants 

in living organisms (Table 2). 
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Table 2. Genotoxicity effect of chemical pollutants in living organisms as revealed by 

different applied molecular markers. 

Living organisms Metal ion 

Molecular 

marker Reference 

Plants species 

   Monocotyledons 

   Wheat (Triticum aestivum L.)  Bo RAPD Kekec et al. (2010) 

Wheat (Triticum aestivum L.)  Cd RAPD Azimi et al. (2013) 

Barley (Hordium vulgare L.)  Cd RAPD Liu et al. (2005) 

Rice (Oryza sativa L.) Cd AFLP Aina et al. (2007) 

Rice (Oryza sativa L.) AS (III) RAPD Ahmad et al. (2012)  

Rice (Oryza sativa L.) Cd SRAP Zhang et al. (2015) 

Maize (Zea mays L.)  Cd RAPD 

Shahrtash et al. 

(2010) 

Maize (Zea mays L.)  

fungicide 

sportak  RAPD Aksoy et al. (2015) 

Maize (Zea mays L.)  Bo and Zn RAPD Erturk et al. (2015) 

Hydrilla verticillata 

Cd, Hg and 

Cu 

RAPD 

and SCAR 

Gupta and Sarin 

(2009) 

Dicotyledons 

   Okra (Abelmoschus esculantus L.)  Cd RAPD Aydın et al. (2013) 

Cucumber (Cucumis sativus L.)  Cu and Zn RAPD Aydın et al. (2012) 

Cumin (Cuminum cyminum L.) Cd RAPD 

Salarizadeh and 

Reza-Kavousi (2015) 

Eggplant (Solanum melongena L.) Cu  RAPD  

Körpe and Aras 

(2011)  

Tomato (Lycopersicum esculentum L.)  Pb RAPD Aydin et al. (2015) 

Rye (Secale cereal L.)  Pb RAPD Ozyigit et al. (2016b) 

Kalanchoe  Cd RAPD Ozyigit et al. (2016a) 

Solanum nigrum L. (wild relative for 

tomato)  

Cd, Cu and 

Zn  ISSR 

Al-Khateeb and Al-

Qwasemeh (2014)  

Arabidopsis thaliana Cd RAPD Zhan et al. (2011)  

Arabidopsis thaliana Cd RAPD Liu et al. (2012)  

White clover Cd and AS RAPD Ghiani et al. (2014)  

Egyptian clover and Sudan grass  Cd RAPD Aly (2012)  

Common bean(Phaseolus vulgaris L.) Cd, Pb, Mn RAPD Enan (2006) 

Common bean(Phaseolus vulgaris L.) 

Hg, Cr and 

Zn RAPD Cenkci et al. (2009)  

Common bean(Phaseolus vulgaris L.) Al and Ni RAPD Al-Qurainy (2009)  
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Common bean(Phaseolus vulgaris L.) Bo RAPD Kekec et al. (2010) 

Rucola (Eruca sativa L.) 

Cd, Pb and 

Zn ISSR Al-Qurainy (2010) 

Rucola (Eruca sativa L.) 

Cd, Pb and 

Zn RAPD 

Al-Qurainy et al. 

(2010) 

Artichoke (Cynara scolymus L.) and 

Runner bean (Phaseolus coccineus L.) Pb RAPD 

Candan and Batir 

(2015)  

Ceratophyllum demersum 

Cd, Hg and 

Cu 

RAPD 

and SCAR 

Gupta and Sarin 

(2009) 

Mung bean (Vigna radiata L.) 

Tannery 

effluents 

(CETP) RAPD  Raj et al. (2014) 

Chili peppers (Capsicum annuum L.) Cd RAPD Aslam et al. (2014) 

Water Lettuce(Pistia stratiotes) Pb ISSR 

Neeratanaphan et 

al. (2014)  

Algae 

   

Ulva lactuca (Chlorophyta) 

Cu, Pb, Cd 

and Zn RAMP Saleh (2015b) 

Ulva lactuca (Chlorophyta) 

Cu, Pb, Cd 

and Zn RAMP Saleh (2016a) 

Ulva lactuca (Chlorophyta) Cd  RAPD Saleh (2016c) 

Padina pavonica (Phaeophyta) Cd RAPD Saleh (2016d) 

 

Heavy metals genotoxicity as expressed in 

DNA changes patterns could be 

manifested by estimated genomic 

template stability (GTS%) as a qualitative 

measurement of DNA damage induced by 

pollutants as reported in many 

investigations  (Liu et al., 2005; Cenkci et 

al., 2010; Aydin et al., 2012; 2013; 

Salarizadeh and Reza-Kavousi, 2015; Zhang 

et al., 2015;  Saleh, 2016c; 2016d).  

More recently, Ozyigit et al. (2016b) 

reported Pb (0, 100, 200 and 400 µmol/L) 

genotoxicity in rye (S. cereale L.) after 2 

weeks exposure, using RAPD marker. The 

previous study revealed RAPD profile 

alterations and that loss and gains bands 

were positively correlated with Pb applied 

concentrations. In this regards, Pb 

treatment induced 3 newly bands 

appearance at 100 and 200 µmol/L Pb 

combined with a loss of 2 bands at 200 

and 400 µmol/L compared to the control. 

Moreover, GTS% values decreased as Pb 

applied concentration increased. 

Erturk et al. (2015) reported boron (Bo) and 

zinc (Zn) genotoxicity on Z. mays using 16 

RAPD primers. The previous investigation 

showed that GTS% decreased as Zn and 

Bo applied concentrations increased.  

Gupta and Sarin (2009) reported 10 mol/L 

Cd, 5 mol/L Hg, and 20 mol/L Cu impacts 

on H. verticillata and C. demersum aquatic 

plants for 96 h exposure, using RAPD and 

sequence characterized amplified region 
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(SCAR) markers. The previous investigation 

showed that heavy metals stress induced 

DNA profile alteration expressed as 

reduction in GTS%. This reduction was more 

noticeable in H. verticillata than C. 

demersum one. 

Aslam et al. (2014) detected DNA changes 

induced by Cd stress in C. annuum L. using 

10 RAPD primers. The previous study 

revealed 184 bands of which 62 bands 

were polymorphic, representing 

polymorphism level of 34%.  

More recently, Saleh (2016a) applied 

Random amplified microsatellite 

polymorphism (RAMP) marker for detection 

of genetic DNA alteration in the green 

algae U. lactuca 5 days after Cu, Pb, Cd 

and Zn exposure. The previous investigation 

revealed that GTS% value was recorded to 

be 65.215, 64.630, 59.835 and 59.250% for 

Pb, Cu, Cd and Zn ions, respectively.  

Moreover, Saleh (2016c) reported Cd-

genotoxicity in U. lactuca green algae 

exposed to Cd stress for 4 days using 20 

RAPD primers. The previous study showed 

that GTS% increased from 45.4 to 72.8% as 

Cd increased from 2.5 to 10 mg/L Cd. 

Similarly, more recently, Saleh (2016d) 

reported the same metal stress treatment 

in P. pavonica brown marine algae using 

22 RAPD primers. The previous investigation 

revealed that GTS% value increased also 

from 30.7 to 42.7% as Cd applied 

concentration increased from 2.5 to 10 

mg/L Cd.  

 

It could be suggest from these 

observations that the interaction between 

RAPD pattern alterations and Cd applied 

concentrations was dose-dependent. 

Similarly, Liu et al. (2005) reported similar 

trends in barley (H. vulgare) and Aydin et 

al. (2013) in okra (A. esculantus L.) under 

Cd stress using RAPD marker. 

 

Indeed, Aydın et al. (2012) reported similar 

findings in Cu and Zn genotoxicity of 

cucumber (C. sativus L.) using RAPD 

marker. The previous investigation revealed 

that GTS% increased from 15.98 to 38.69% 

as ions concentration increased from 40 to 

640 mg/L. Moreover, Aydin et al. (2013) 

studied Cd genotoxicity in okra (A. 

esculantus L.) after 21 Cd days exposure, 

using RAPD marker. The previous study 

showed that GTS% increased from 59 to 

72.5% as Cd applied concentrations 

increased from 30 to 120 mg/L Cd. 

Whereas, Salarizadeh and Reza-Kavousi 

(2015) reported that the GTS% values 

decreased in C. cyminum as Cd applied 

concentration increased from 300 to 1050 

μM after 7 days Cd treatment using 10 

RAPD primers. These findings could be 

explained by the fact; decreased GTS% 

does not related to high DNA damages. 

Increased GTS% as Cd applied 

concentrations increased, could serve as a 

defense mechanism leading to a better 

and effective DNA repair. This observation 

could be related to the fact, that DNA 

changes in RAPD profiles expressed as 

disappearance of normal control bands 

or/and appearance of new ones; appear 

to balance each other (Liu et al., 2005; 

Aydin et al., 2013; Saleh, 2016c; 2016d).  

 

Meanwhile, other reports however 

mentioned an inverse tendency 

concerning GTS% under Cd treatment. Aly 
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(2012) reported Cd impact in Egyptian 

clover and Sudan grass seedlings for 21 

days. The previous study showed that Cd 

caused increased P% and decreased 

GTS% as Cd applied concentration 

increased. Moreover, Zhang et al. (2015) 

stated Cd effect in two rice varieties by 

SRAP marker. The previous investigation 

revealed that GTS% decreased as Cd 

applied concentration increased. Similarly, 

Salarizadeh and Reza-Kavousi (2015) 

reported decrease in GTS% under Pb stress 

using RAPD marker in cumin (C. cyminum). 

Moreover, similar findings were reported in 

artichoke (C. scolymus L.) and runner bean 

(P. coccineus L.) (Candan and Batir, 2015) 

exposed to Pb stress using the same 

marker. 

Whereas, Cenkci et al. (2010) stated that 

Pb exposure in fodder turnip (Brassica 

rapa L.) using 11 RAPD primers; caused 

decline in GTS% as Pb concentration 

increased from 0.5 to 5 mg/L Pb. However, 

Aydin et al. (2015) reported that GTS% 

values inversely increased from 78.1 to 

90.1% as Pb concentration increased from 

40 to 240 mg/L Pb in tomato (L. 

esculentum) after 21 days Pb exposure 

using RAPD marker.  

 

CONCLUSION 

It could be suggest from the data 

presented herein that, most investigated 

pollutants at physiological level were in the 

following order: Cd (71%) ˃ Zn (26%) ˃ Cu 

(24%) ˃ Pb (19%). Moreover, it is worth 

noting that the given investigations mainly 

focused on genotoxicity induced by Cd 

(57%) followed by Pb (24%), Zn (21%) and 

Cu (14%). Overall, RAPD tool is the most 

widely applied molecular markers in the 

field of pollutants genotoxicity. Thereby, 

RAPD marker could employ as a potent 

marker for detecting genotoxicity of 

pollutants in living organisms. 
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